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Optimal Linear Estimation of Bounds of Random Variables 

% 

Peter Cooke 

1.  Introduction. 

Suppose X,,Xp,...,X  are independent random variables, each with 

density f(x) and distribution function F(x), where F(x) e (0,l) 

only for x e (cp, 0).  Let Y-, < Yp < • • • < Y  denote the order 

statistics based on X.,Xp,...,X . The parameter 6    is known to be 

finite and is the parameter of interest. The large sample inference 

for 0 which follows applies whether or not cp is known, though when 

cp = -oo we will need to assume that the X1 s have finite second moment 

since our estimators are linear functions of the order statistics and 

we will compare estimators through their mean squared errors. 

When only the r largest observations are used to estimate 0, a 

linear estimator is of the form 

(1) 9   = 7 a.Y  __ . n,r  .*-  l n-i+1 
'   x=l 

In section 2 we will show, for fixed r > 2, how the coefficients 

a,>ap,...,a  can be determined so as to yield the estimator of the 

form (l) with asymptotically smallest mean squared error. 



2.  Determination of the Coefficients. 

It is clear that since we are discussing large sample theory and 

the parameter of interest is the upper endpoint of the distribution and 

also, since we are basing our inference on the largest few observations, 

from a practical point of view we don't need to know the form of f, 

but we need to characterize the shape of its upper tail. Thus, as in 

Cooke (1979) we will consider the case in which 

l/v 
(2) Fn(y) ~eXp{-(|f-)  } as n - . , 

n 

for which Gnedenko's   (19^3) necessary and sufficient condition is that 

for    c > 0, 

, . l-F(cy+e) l/v , -O-I/T     1\ lim ) J, - v'    = c '     ,    where    u    = F    (1 —) . 
y_0_     l-F(y+e) ' n v      ny 

The value    v = 1    corresponds to densities    f (x)    which are truncated 

at    0;    that is,    0 < f (0 ) < 00.    In general,    v = l/(k+l)    for a density 

which is zero or infinite at    0    and whose first finite,  nonzero left 

derivative at    0    is its    k^*1    left derivative. 

It is proved in Cooke  (1979) that, when Gnedenko's condition holds 

and    n -*   00,    for    i > 1    and    i    small 

Ö) «(Vwl-'-H)^ 

and,  for    i > j > 1, 



M Cov(Yn-i+i'
Yn-M} ~  rOT (rt^rr •   rTir} ' 

where r(a) is the familiar gamma function defined by 

• 00 

r(a) = /  e'x x  dx for a > o 
Jo 

It follows from  (3) that as    n -*• oo 

(5) E 
r(v+i) (v-si^av1)-^)^! 

When  J] a. = 1, which we require for e 
1=1 X n' 

estimator of 6, using (U) and (5) we find, when n •* oo, 

to be a consistent r 

r  r 

(6) K'^'V'2^^^!^'- 

The quadratic form on the right in (6) can be written as a' A a, 

where a is a column vector with elements a-,,ap,...,a and A is a 

symmetric r x r matrix with (i,j)  element 

_ r (2v+i )r (v+j )  .  . 
xig - r(v+i)r(j)  > J ^ x 

If we let 1 denote the r x 1 vector with each element equal to 

1, our problem reduces to finding the vector a which minimizes a' A a 

subject to a'l = 1. The minimization is achieved by the vector 

—1    -1   -1 -1    -1 
a = (l* A l) A  1 and the minimum value of a' A a is (!• A l) 
***«      I>J 



3.  Computations. 

In the tables to follow we have, correct to three decimal places, 

values of the coefficients of the r largest order statistics for the 

minimum mean squared error estimator of 0, which henceforth we denote 

by 0  . Also tabulated are some values of 7 (v) = lim (e-u )" E(e  -0) . a      n.r 'TK n   K  n,r ' 

The truncation case v = 1 is probably the most important case from 

a practical point of view, but is singled out here in view of the special 

nature of the minimizing coefficients a,,ap,...,a . Gnedenko's condition 

suggests that for y close to 0, 1-F(y) « (0-y)    and hence, röien 

v = 1, that F(y) is linear in y for y near 6.    This corresponds 

to a Uniform distribution. If indeed Y  ,,,Y  ,_,...,Y  are the r n-r+1* n-r+2'  ' n 

largest order statistics from a Uniform distribution with upper endpoint 

0 and Yn,Y„,...,Y   are ignored, then Y  ,, and Y  are Jointly 1' 2'      '  n-r     ö    '      n-r+l      n    ° J 

sufficient for 0, in which case it follows that the minimum mean squared 

error estimator of 0 will be a linear function of Y   , and Y 

alone. Thus ap = a, = • • • = a -1=0 when v = 1. The increasing 

dependence on Y    ,Y      _^,,...,Y    ^    with decreasing v or, equivalently, 

increasing power of (0-y), is apparent from the tables to follow. 

Using (6) with v = 1 and a~ = a, = • • • = a . = 0 we easily find 

that the minimizing coefficients are a, = 1+r" , a = -r   and that 

the minimum value of  7 (l) is l+r~ . It follows that 7 (l) cannot 

be smaller than 1 for any r > 1 and that a nearly optimal estimator 

is obtained with a fairly small value of r. 



Table 1 

Minimizing Coefficients and Asymptotic Mean Squared Error of 

the Optimal Estimator. 

v = 1/2 

r ^ *, 
"3 

ai* a5 
a6 *7 

7r(l/2) 

2 2 -1 .667 

3 1.636 .273 -.909 .5^5 

1* 1.1*1*0 .21*0 .160 -.81*0 .1*80 

5 1.311* .219 .11*6 .109 -.788 .1*38 

6 1.221* .201* .136 .102 .082 -.71*8 .1*08 

7 1.157 .193 .129 .096 .077 .061* -.716 .386 

V = 1/3 

r al °2 "3 
ai* a5 

a6 "7 
7r(l/3) 

2 2.5 -1.5 .561* 

3 1.951 .585 -1.537 .1*1*0 

1* 1.651* .h9$ •372 -1.523 .373 

5 1.1*63 .1*39 .329 .269 -1.501 .330 

6 1.328 .398 .299 .21*1* .210 -1.1*79 .300 

7 1.226 .368 .276 .226 .193 .171 -1.1*59 .277 

V = 1/1* 

r al 
a„ 

2 "3 
al* a5 

a6 *7 
7rdA) 

2 3 -2 .532 

3 2.273 .909 -2.182 .1*03 

1* 1.882 • 753 .602 -2.237 .331* 

5 1.632 .653 .522 .1*1*8 -2.255 .289 

6 1.1*56 • 583 .1*66 •399 .355 -2.260 .258 

7 1.325 • 530 .1*21* .363 .323 .291* -2.259 .235 



Table 1 (Continued) 

Minimizing Coefficients and Asymptotic Mean Squared Error of 

the Optimal Estimator. 

v = 1/5 

r 
"l a2 "3 % a5 

a6 «V 7r(l/5) 

2 3.5 -2.5 .518 

3 2.598 1.237 -2.835 .381+ 

1* 2.117 1.008 .840 -2.964 .313 

5 1.811 .863 .719 .634 -3.027 .268 

6 1.598 .761 .634 .560 .509 -3.062 .236 

7 1.^39 .685 .571 .504 .458 .424 -3.082 .213 

Although the minimizing coefficients are not given above for 

r = 20, except when v = 1, the following table gives values of TJ__(V), 

where 

E (0  -e f 
r.,\         -, •       n.r r\   (v) = lxm    *  

n •* 00  E(e -e)c 

^  n ' 

is the asymptotic efficiency of 0  relative to 0    and, as discussed * ° n n,r    ' 

in Cooke (1979)* 6      is the estimator of the form 

n-1 
Y + c(v)(Y -U-e"1) T    e'XY    .} 

i=0 

with asymptotically smallest mean squared error and is the best estimator 

derived until now. Also tabulated are values of 5po(v), where 



8 (v) = lim 

/A    %2 E(e   -e r 
n,r 

n -» oo E (Y -0) 
n ' 

to illustrate the considerable progress which has been made in finding 

better estimators of 0 than Y  since Robson and Wiitlock*s (1964) 

attempt in the truncation case. 

Table 2 

Efficiencies Relative to the Optimal Estimator Based on the 20 

Largest Observations and Improvement Over Y . 

V 1 1/2 1/3 lA 1/5 

Wv) .798 .k9k .357 .257 .252 

620(V) • 525 .278 .185 .lij-3 .120 

k.      Estimation of cp. 

When cp is known to be finite and is the parameter of interest, for 

given r > 1 we seek the estimator of the form cp   = > a.Y. with 
°^     — n,r  .*•»  1 1 

'   i=l 
asymptotically smallest mean squared error. 

If the lower tail of f is characterized by the constant v in 

the way the upper tail is characterized above, then the minimizing coeffi- 

cients are precisely those in section 3 since, if X.,Xg,...,X are independent 

with lower bound cp and v characterizes the lower tail of f, then 

-X-, -X2,... , -X  are independent with upper bound -cp and the upper tail 

of the distribution of -X. is characterized by v. Finally, the largest 

r order statistics based on -X,,-X„,...,-X  are the negatives of the -1!' "2 n 

smallest r order statistics based on X, ,X„,...,X . 
1' 2'      '  n 

7 



References 

Cooke, P.J. (1979). Statistical inference for bounds of random variables. 

Biometrika. To appear. 

Gnedenko, B. (19^3). Sur la distribution limite du terme maximum d'une 

serie aleatoire. Ann. Math., hk,  ^23-^5^. 

Robson, D.S. and Wiitloek, J.H. (196^). Estimation of a truncation point. 

Biometrika, 51, 33-39» 



UNCLASSIFIED 
SECURITY CLASSIFICATION OF THIS PAGE (When Dmta Entered) 

REPORT DOCUMENTATION PAGE 
I.   BEPORT NUMBER 

37 

READ INSTRUCTIONS 
BEFORE COMPLETING FORM 

2. GOVT ACCESSION NO 

4.   TITLE (end Subtitle) 

Orjtimal Linear Estimation of Bounds of 

Random Variables 

7.    AUTHOR^ 

Peter Cooke 

3.    RECIPIENT'S CATALOG  NUMBER 

S.   TYPE OF REPORT ft PERIOD COVERED 

TECHNICAL REPORT 
S. PERFORMING ORG. REPORT NUMBER 

3. CONTRACT OR GRANT NUMBERf».) 

DAAG29-77-G-0031 

3-    PERFORMING 3RGANIZATION NAME ANO ADDRESS 

Department of Statistics 
Stanford University 
Stanford,  CA 9^305  

10.   PROGRAM ELEMENT. PROJECT, TASK 
AREA & WORK UNIT NUMBERS 

P-1W35-M 

It.    CONTROLLING OFFICE NAME ANO AQ3RESS 

U. S. Army Research Office 
Post Office Box 12211 
Research Triangle Park. NC 2770Q 

12.   REPORT DATE 

September 2k,  1979 
'3.   NUMBER OF PAGES 

8 
I*.    MONITOPt*G A3 = hCY NAME 4  AOORE3S<i/ dlllerent Irom Controlling Olllee) IS.   SECURITY CLASS, (of thle report) 

UNCLASSIFIED 

ISBW    OECLASSIFICATION/DOWNGRADING 
SCHEDULE 

16.    0ISTRi3'_i~->» STATEMENT fo.' Uli» Report) 

APPROVED FOR PUBLIC RELEASE: DISTRIBUTION UNLIMITED. 

17.    DISTRIBUTION S~*TE.M£NT (oi :fc» aaerract entered In Block 10, II dlHerent Irom Report) 

18.    SUPPLEMENTARY NOTES 

The findings in this report are not to be construed as an official Department 
of the Army position, unless so designated by other authorized documents. 
This report partially supported under Office of Naval Research Contract 
N0001^-76-C-OV75 (NR-Ote-267) and issued as Technical Report No. 276. 

19.    KEY WORDS(Ccnthrue on reverse aide It necemamry end identify by block number) 

Linear estimator; Gnedenko's condition; Mean squared error; 

Asymptotic relative efficiency. 

20.     ABSTRACT (Continue on reverse aide it neceaaary end identity by block number) 

PLEASE SEE REVERSE SIDE 

DD    I  JAN  73    1473 EDITION OF   1  NOV 65 IS OBSOLETE 

S'N 0!02- L.=-0;-1-460! UNCLASSIFIED 
SECURITY CLASSIFICATION OF THIS PAGE (When D"* Entered) 



UNCLASSIFIED 

SECURITY CLASSIFICATION OF THIS PAGE (Whan Data Entered) 

OPTIMAL LINEAR ESTIMATION OF BOUNDS OF RANDOM VARIABLES 

The problem of estimating the bounds of random variables has been 

discussed in Cooke (1979). Here we discuss optimality of estimates 

when the data is censored so that only the r largest or smallest of 

the observations is available for estimating a bound. For fixed r 

we find the linear function of the censored data which is the optimal 

estimator of a bound in the sense that, when the sample size is large, 

the estimator has smallest mean squared error among all such linear 

estimators. Provided r is not close to one, these estimators are 

almost optimal when the entire sample is available since, for example, 

when estimating an upper bound and the sample size is large, the 

largest few observations carry most of the information about the bound. 

This fact is illustrated in one case. 

276/37 

S/N 0102- LF-014-6601 

UNCLASSIFIED 
SECURITY CLASSIFICATION OF THIS PAGEftWi»n Data Entarad) 


